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Abstract: A high-resolution and near real-time drought monitoring dataset has not been made readily
available in drought-prone China, except for the low-resolution global product. Here we developed a
set of near real-time meteorological drought data at a 0.25◦ spatial resolution over China, by seamlessly
merging the satellite-based near real-time (RT) precipitation (3B42RTv7) into the high-quality
gauge-based retrospective product (CN05.1) using the quantile-mapping (QM) bias-adjustment
method. Comparing the standard precipitation index (SPI) from the satellite-gauge merged product
(SGMP) with that from the retrospective ground product CN05.1 (OBS) shows that the SGMP
reproduces well the observed spatial distribution of SPI and the pattern of meteorological drought
across China, at both the 6-month and 12-month time scales. In contrast, the UN-SGMP generated
by merging the unadjusted raw satellite precipitation into the gauging data shows systematical
overestimation of the SPI, leaving less meteorological droughts to be identified. Furthermore, the
SGMP is found to be able to capture the inter-annual variation of percentage area in meteorological
droughts. These validation results suggest that the newly developed drought dataset is reliable
for monitoring meteorological drought dynamics in near real-time. This dataset will be routinely
updated as the satellite RT precipitation is made available, thus facilitating near real-time drought
diagnosis in China.
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1. Introduction

Drought is one of the most widely spread and costly natural disasters in the world [1,2]. Compared
with other natural disasters, droughts tend to persist for a long time period (from months to years)
and extend over a large spatial extent (from local to continental scale), with devastating impacts on
agriculture production [3], water use [4], and ecosystem function [5]. China has suffered from a series
of prolonged and severe droughts in the past few decades [6,7], with crop yield loss up to 25.2 billion
kilograms and an average of more than 270 million people affected by water shortage per year [8].
Monitoring the development of drought in a real-time manner is fundamental for enhancing the
resilience to droughts, thus benefiting the adaptation and mitigation strategies.

Typically, drought originates from a sustained precipitation deficit relative to the long-term
climatology [9–13]. The standard precipitation index (SPI) has been widely used to characterize
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below-normal precipitation conditions and detect meteorological droughts at various time
scales [13–15]. In China, the multi-decadal in-situ precipitation measurements have been used to enable
historical drought analysis, in terms of the spatial-temporal variations and change trends [16–20].
However, ground observations are not readily available in real-time, with several months (or even
longer time) latency for data post-processing, thus limiting the feasibility of real-time drought
monitoring and diagnosis using ground observations [21]. Alternatively, satellite remote sensing
provides a promising opportunity for large-scale measurement of precipitation with high temporal
resolution and has been successfully used in numerous studies for hydrometeorological monitoring
and analysis [22–29]. To date, several satellite-based precipitation products have been developed
with various spaceborne and retrieval algorithms, including the Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement (GPM) mission (IMERG) [30], the Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) [31], the Climate Precipitation Center
Morphing (CMORPH) [32], and the Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [33]. Albeit with near real-time mode, the satellite dataset
suffers from short data records (usually less than 20 y), which hampers its utility to provide detailed
drought information [34]. Therefore, integrating satellite-based real-time precipitation estimates
into the ground-based multi-decadal observations can effectively remove the length limitation of
satellite data and enables the reliable near real-time estimation of SPI, with respect to a long-term
consistent climatology (formed by the multi-decadal ground observations), for operational drought
monitoring applications.

Considerable efforts have been made to seamlessly combine satellite estimates with ground
observations [35–37]. For example, using a statistical bias-adjustment approach, Sheffield et al. [38]
corrected the satellite-based near real-time (RT) data against the observational data for establishing an
experimental hydrological model-based drought monitoring system. Through merging the existing
historical rain gauge data, Kimani et al. [39] created consistent satellite rainfall data to facilitate
long-term climate studies over East Africa. In China, past efforts have been devoted to developing
conceptual models for conducting high spatial-temporal satellite-gauge integrated precipitation
analyses during the warming season (May–September), when data records from the ground automatic
weather stations are accessible [40,41]. However, to date, little work has been done to derive a
long-term and near real-time record with consistent climatology for drought analysis due to the lack of
large-extent near real-time ground observations in China. That is, high-resolution drought data that
can be timely updated in near real-time is still not publically available in China, which largely limits
large-scale drought monitoring and diagnoses.

To fill this gap, in this study, we aim to develop a high-resolution near real-time meteorological
drought dataset by combining satellite RT precipitation with high-quality retrospective ground
observations. The meteorological drought data records can be routinely updated when the satellite-based
precipitation data is available in near real-time. This will enable us to track dynamics of meteorological
drought in near real-time, thus providing timely information for prompt response and preparation
for droughts.

2. Materials and Methods

The TRMM Multisatellite Precipitation Analysis (TMPA) real-time (RT) product provides 3 h
near real-time precipitation (with about 9 h latency) for each 0.25◦ × 0.25◦ latitude-longitude grid
cell across the domain of 50◦S–50◦N [31] and has been widely used to drive hydrological models
to produce real-time hydrological conditions. The latest version of TMPA-RT product (3B42RTV7),
which includes consistent precipitation estimates from March 2000 to the near real-time moment, was
obtained for use in this study. A set of 56-y (1961–2016) daily observational product (CN05.1) at a 0.25◦

spatial resolution, derived from more than 2400 in-situ gauging stations by the Chinese Meteorological
Administration (CMA), was utilized to form the long-term climatology [42]. With inclusion of more
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ground stations, the CN05.1 product has been recognized to be more reliable than its previous versions,
which were based on about 700 gauging stations [43–45].

In this study, the quantile mapping (QM) bias-adjustment approach, which has been widely
used in previous studies [46,47], was introduced to seamlessly merge the 3B42RTV7 satellite RT data
into the CN05.1 gauging data for producing the near real-time meteorological drought data. The
QM approach is used to adjust the cumulative distribution function (CDF) of 3B42RTV7 by mapping
it onto the corresponding distribution of CN05.1 in the same period. In general, it includes two
steps: 1) Identifying a percentile fraction for the raw data from the probability distribution fitted
by the satellite data; 2) estimating the adjusted value by “looking up” that percentile fraction in the
corresponding distribution, derived from the observations [48]. This equal-quantile transformation
scheme has been demonstrated as comparable to other bias-correction methods [49]. To independently
evaluate the performance of the satellite-gauge merging approach, a leave-one-out cross-validation
strategy is employed when applying the QM. That is, for any given year during the satellite-gauge
overlapping period (2001–2016), the daily precipitation for each month was adjusted following the
corresponding satellite-gauge precipitation transformation relationship derived from the remaining
15-y period (referred to as training period). Specifically, the daily precipitation (xi,j) of month j (j = 1, 2,
. . . , 12) in the year i (i = 2001, 2002, . . . , 2016) was corrected in following procedures:

1) To construct the CDF-mapping relationship in the training period. The CDFs of 3B42RTV7
(FSj) and CN05.1 (FOj) for the month j were fitted from the daily precipitation for all days within this
month over the 15-y training period (with the validation year i excluded) using two-parameter Gamma
distribution, respectively.

2) To replace the raw daily precipitation xi,j with the adjusted x′i,j. A cumulative probability
(probi,j) for the raw satellite data xi,j was determined by its position in the CDF of 3B42RTV7 data (i.e.,
FSj) (see Equation (1)); thereafter, the daily precipitation (x′i,j) with the same cumulative probability
(probi,j) in the CDF of CN05.1 data (FOj) was estimated and employed to replace xi,j.

probi,j = FSj (xi,j), (1)

x′i,j = FOj
−1 (probi,j), (2)

By doing so, the satellite-based 3B42RTv7 precipitation was seamlessly combined with the
gauge-based CN05.1 data, leading to the real-time daily precipitation data with a 56-y climatology.
Using the satellite-gauge merged precipitation record, the near real-time meteorological drought
dataset was developed from the near real-time estimation of SPI at various time scales.

In this study, we selected two typical drought years of China, i.e., 2010 and 2012, to validate
the newly developed meteorological drought monitoring data by comparing the SPI, estimated from
the satellite-gauge merged data, with that from the observational CN05.1 over 10 major hydrological
zones of China, including seven large river basins (Songhua River, Liao River, Hai River, Yellow River,
Huai River, Yangtze River, and Pearl River) and three regions (southeast region, southwest region,
and northwest region) (see Figure 1). In addition, the percentage area affected by meteorological
drought, summarized from the grid cells with SPI value less than −0.8 [50], was calculated for further
comparisons. Hereafter, the ground-based CN05.1 data is taken as the observational reference (referred
to as OBS). The long-term and near real-time precipitation record derived through merging the
adjusted 3B42RTv7 satellite data into the CN05.1 gauging data is referred to as the SGMP data, while
the UN-SGMP data indicates the product created by merging the unadjusted raw satellite data into the
CN05.1 observational data. Two metrics, the Nash–Sutcliffe efficiency (Ef) and relative error (Er; %),
were employed to assess the performance of the meteorological drought data product. The variables
Ef and Er (%) are calculated as:

Ef = 1− ∑(Di,o − Di,s)
2

∑
(

Di,o − DO
)2 , (3)
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Er(%) =

(
DS − DO

)
DO

∗ 100%, (4)

where Di,o and Di,s are the ith month percentage area in meteorological drought, summarized from
the OBS and SGMP (or UN-SGMP) data during the overlapping period, respectively. DO and DS
are the mean annual percentage meteorological drought area estimated from the OBS and SGMP (or
UN-SGMP) data during the overlapping period, respectively.
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Figure 1. The 10 major hydrological zones of China denoted by a unique number: 1. Songhua River; 2.
Liao River; 3. Hai River; 4. Yellow River; 5. Huai River; 6. Yangtze River; 7. Pearl River; 8. Southeast
region; 9. Southwest region; and 10. Northwest region.

3. Results

Figure 2 shows the monthly mean precipitation from the raw unadjusted satellite-based 3B42RTv7
data and ground observations, across China, during the overlapping period. Overall, the satellite RT
data (Figure 2a) bears some resemblance with the ground-based precipitation in terms of the spatial
distribution pattern (Figure 2b), with monthly precipitation decreasing from Southeast to Northwest
China. However, there is a positive bias in most of the country, inherent in the raw satellite data
compared to the observational data (Figure 2c). Specifically, a positive bias greater than 10 cm (per
month) is found in more than three quarters (76%) of the grid cells, while ~25% of grid cells show a
difference larger than 30 cm (per month) which are mainly located in the drought-prone regions of
China including the northeast region (e.g., Western Liao River), southwest, and northwest regions.
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Figure 2. Monthly mean precipitation from (a) the raw satellite-based 3B42RTV7 data and (b) the
gauge-based CN05.1 data, as well as (c) the difference between the two products over the overlapping
period (2001–2016). (1–10) the basins/regions shown in Figure 1.

Figure 3 shows the 16-y monthly precipitation from the 3B42RTV7 (blue line), adjusted 3B42RTV7
(red line), and the gauge-based CN05.1 data (black line) for each of the 10 hydrological zones.
Compared with the gauge-based CN05.1 data, a systematic overestimation of 3B42RTV7 precipitation
was found for all zones. In Northern (Songhua River, Liao River, Hai River, and Yellow River) and
western mountainous areas of China (Southwest and Northwest China), the relative bias (Er) is more
than 20% and, in extremes cases, exceeds 100%, indicating a significant inconsistency between satellite
remote sensing and ground gauges. With bias-adjustment, the systematic overestimation of 3B42RTv7
was effectively removed, with the relative bias less than 6% for all zones. This suggests that the
bias-adjustment can effectively remove the satellite-gauge (3B42RTv7–CN05.1) inconsistency arising
from different data sources.
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Figure 4 presents the monthly precipitation and the 12-month SPI (SPI12) derived from the
satellite-gauge merged data before and after adjustment at three typical locations in North, Central and
South China, respectively. Comparing with the observational CN05.1 data, the 3B42RTv7 shows an
evident positive bias of 55%, 97%, and 13%, respectively, at each of the selected grid cells. As expected,
the 12-month SPI estimated from the UN-SGMP fails to capture the inter-annual variability of SPI from
the observational data (i.e., CN05.1), with the Nash–Sutcliffe efficiency (Ef) falling to the unsatisfactory
catalog (less than zero). After the adjustment, the positive bias of monthly precipitation has been
largely removed with the Er value around zero. The estimated 12-month SPI (using the SGMP data)
have also well reproduced the observations, with the Ef no less than 0.50. This suggests that seamlessly
merging the adjusted satellite RT data into the gauging data can benefit reliable estimation of SPI in
near real-time mode.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 12 
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Figure 5 compares the 6-month SPI from the SGMP (and UN-SGMP) data with that estimated
from the 61-y gauge-based CN05.1 product (i.e., OBS) in two drought months from 2010 (January and
August) and from 2012 (January and May), respectively. Consistent with the observed drought pattern
in January 2010 (Figure 5a), two distinct meteorological droughts in the southwest and northeast
regions are identified from the SGMP (Figure 5c), while meteorological drought in the northeast is
not detected by the UN-SGMP data (Figure 5b). In August 2010, the SGMP (Figure 5f) and OBS
data (Figure 5d) both indicate considerable drying in part of North (mostly in Inner Mongolia) and
Southwest China (mostly in Yunnan), while such patterns are not reproduced by the UN-SGMP product
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(Figure 5e). The January 2012 SPI estimated from the SGMP (Figure 5g) and OBS (Figure 5i) bear an
overall resemblance with meteorological droughts identified over most of the northeast, southwest,
and northwest zones. In contrast, the UN-SGMP tends to exhibit a wide-spread wetting (SPI > 0)
in January, except for a small portion of the southwest region (Figure 5h). Similarly, in May 2012
(Figure 5j–l), the estimated meteorological drought pattern, based on SGMP data, is found to be more
realistic than the UN-SGMP. In addition, the percentage area in meteorological drought estimated from
the SGMP is close to that from the OBS data, which amounts to 43% and 33% in January 2010, 23% and
19% in August 2010, 34% and 35% in January 2012, and 20% and 24% in May 2012, respectively (see
Table 1).Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 12 
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Figure 5. Six-month SPI (SPI6) derived from the OBS data (CN05.1; left panels), the UN-SGMP
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3B42RTV7–CN05.1 merged data; right panels) for January (a–c) and August 2010 (d–f) and for January
(g–i) and May 2012 (j–l).

Table 1. Percentage area in meteorological drought (%) estimated from the UN-SGMP, SGMP, and
OBS data

Month
6-Month SPI 12-Month SPI

UN-SGMP SGMP OBS UN-SGMP SGMP OBS

January 2010 16 43 33 16 50 49
August 2010 9 23 19 9 24 25
January 2012 8 34 35 17 40 40

May 2012 7 20 24 9 32 32
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Figure 6 shows the spatial pattern of 12-month SPI (SPI12) estimated from the UN-SGMP,
SGMP, and the reference OBS data in two drought months from 2010 (January and August) and
from 2012 (January and May). Overall, the SGMP data is found to outperform the UN-SGMP in
reproducing the spatial distribution pattern of 12-month SPI from OBS. Overall, the UN-SGMP data
tends to overestimate SPI in large areas in the four year-month combinations, leading to unrealistic
meteorological drought diagnoses. For instance, two severe meteorological droughts across a large
portion of South China and Northeast China in January 2012 are detected in the OBS precipitation data
(Figure 6g), while significant underestimation of spatial extent under meteorological drought is found
for the UN-SGMP (Figure 6h). In contrast, the SGMP data have captured the observational patterns
well, with meteorological droughts identified in most of South China (stretching from the southwest
inland to the southeast coast) and the southern part of the northeast (Figure 6i). With adjustment (i.e.,
from the UN-SGMP to SGMP), the fractional area of meteorological drought increases from 16% to 50%
in January 2010, from 9% to 24% in August 2010, from 17% to 40% in January 2012, and from 9% to
32% in May 2012, respectively, which is consistent with the estimates (49%, 25%, 40%, and 32%) from
the OBS data (see Table 1). The above analyses on the 6-month and 12-month SPI (SPI6 and SPI12)
both suggest that the SGMP data, with the satellite-gauge gap bridged, can reproduce the observed
spatial patterns of SPI and meteorological drought well.
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Figure 7 shows the temporal variation in the percentage area affected by meteorological drought,
estimated from the UN-SGMP, SGMP, and OBS data, during the overlapping period. As expected, the
UN-SGMP exhibits considerable bias (up to 60%) in the SPI6-based meteorological drought area, while
the magnitude of Ef is above 0.50 and Er is less than 5% for the SGMP data. This suggests that the
SGMP data is able to capture the inter-annual variability of observational meteorological drought area
in China [51]. Similarly, the SGMP data is much superior in the SPI12-based meteorological drought
area to the UN-SGMP data, with Er decreasing from 66% to 2% and Ef increasing from less than zero to
0.62. These comparisons further demonstrate the effectiveness of SGMP data, generated in this study,
for reliable meteorological drought monitoring in near real-time.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 12 
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4. Conclusions and Discussion

In this study, we generated a long-term near real-time precipitation record with consistent
climatology by merging the satellite RT data (3B42RTv7) into the retrospective ground observations
(CN05.1), wherein the QM approach was used to bridge the gap (i.e., source-specific inconsistency)
between the 3B42RTv7 satellite data and the CN05.1 gauging data. Using the satellite-gauge
merged precipitation (SGMP) record, we developed near real-time meteorological drought monitoring
data at a spatial resolution of 0.25◦ over China. The newly developed meteorological drought
dataset was validated against that estimated from the observational CN05.1 data (OBS) during the
overlapping period.

Results show that the raw 3B42RTV7 satellite data is subject to systematic overestimation of
precipitation relative to the gauge-based CN05.1 data. The relative bias (Er) is found to be greater than
20% (or even exceeding 100%) across most of China. After bias-adjustment with the QM approach,
the bias of satellite-gauge dataset (3B42RTV7–CN05.1) is dramatically decreased to less than 6%,
suggesting that the adjusted 3B42RTV7 data bear an overall consistency with ground observations.
Further analyses at three typical locations (grid cells) show that the SGMP dataset is able to capture
the inter-annual variability of reference SPI from the OBS data, with the Ef being less than 0.50.
In contrast, the performance of UN-SGMP data (i.e., combining the unadjusted raw satellite RT
data with the multi-decadal gauging data) is relatively poor with the Ef falling to the catalog of
less than zero. Comparing the spatial patterns of meteorological droughts in four typical drought
months show that the SGMP data is able to reproduce the spatial distribution pattern of SPI and
meteorological drought, as indicated by the observational data (CN05.1), at both the 6-month and the
12-month scales, while the UN-SGMP data shows wide-spread overestimation of SPI. Consistently, the
meteorological drought area summarized from the SGMP data shows close agreement with the OBS
data, with the magnitude of Ef above 0.50 and Er less than 5%. These validation analyses demonstrate
that the meteorological drought diagnosis based on the UN-SGMP data is rather unrealistic due
to the systematic overestimation of SPI arising from the satellite-gauge inconsistency, whereas the
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SGMP-based drought data can provide reliable meteorological drought information through realistic
near real-time estimation of SPI.

Although the Integrated Multi-satellitE Retrievals for GPM (IMERG) has been made available as
the successor mission of the TRMM mission since March 2014, the short overlapping period between
IMERG satellite data and CN05.1 gauging data (March 2014–December 2016) hampers the effectiveness
of the satellite-gauge merging approach. Thus, the TMPA-RT data were employed as the source of
near real-time precipitation in this study. Future efforts should be dedicated to develop and update the
near real-time meteorological drought product with the IMERG-RT data when the long-term record
of IMERG data is available. Furthermore, it should be noted that the QM bias-adjustment approach
used in this study is not intended to remove the inherent errors in 3B42RTV7 satellite RT data, but to
remove the satellite-gauge systematic error.

The newly developed meteorological drought product will be updated on a timely basis and
made available to the public in netCDF format via the internet, with the near real-time availability of
3B42RTv7 satellite precipitation. It is not only useful for examining the long-term historical changes
in meteorological drought, but also has a great value by facilitating near real-time detections of
meteorological drought, thus complementing existing drought adaptation and mitigation efforts
in China.
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