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The geometry relation and the contact point-pairs detection between two three dimensional (3D) objects with arbitrary shapes are
essential problems involved in discontinuous computation and computational geometry. This paper reported a geometry relation
judgment and contact searching algorithm based on Contact Theory. A contact cover search algorithm is proposed to find all the
possible contact cover between two blocks. Two blocks can come to contact only on these covers. Each contact cover can define a
possible contact point-pair between two blocks. Data structure and flow chart are provided, as well as some examples in details.
Contact problems involving concave blocks or parallel planes are considered to be very difficult in past and are solved by this
algorithm. The proposed algorithm is compacted and applicable to the discontinuous computation, such as robotic control, rock
mass stability, dam stability etc. A 3D cutting and block searching algorithm is also proposed in this study and used to search the
outer boundary of the 3D entrance block when 3D concave blocks are encountered. The 3D cutting and block searching
algorithm can be also used to form the block system for jointed rock.

contact, discontinuous computation, block cutting, computational geometry, jointed rock, cover
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1 Introduction

In technological and natural process, contact between media
often play an important role, especially moving interfaces are
encountered. Contact is essential in the problems, such as
assembling the mechanical parts, analyzing the stability of
rock mass, analyzing the contact force between foundation
and soil, attacking a target with missiles, or holding an object
with a mechanical arm etc. In these problems, one of the key
tasks is to calculate when and where two objects contact.
The calculation of when and where two objects contact can

be named as contact computation [1]. Because contact
computation is essential in many engineering problems, in-
cluding the mechanical analysis of rock, stability analysis of
dam, the stress analysis of mechanical control, and the me-

chanical control of robot, it has gained many concerns of
scientists and engineers.
Neighbor searching is a rough preparation for contact

computation. A blocky system contains more than one dis-
continues object. But only two blocks which are close en-
ough have the possibility of contact and these two blocks are
defined as neighboring blocks. Before contact computation,
algorithms for finding neighbor blocks can improve the ef-
ficiency for detecting contacts. There are mainly two kinds
of neighbor searching algorithms, such as space-based grids
and object-based cells. Space-based grids [2,3] are generated
by dividing the system space into a set of spatial grids with
some topological structure. Thus, blocks or elements involve
the same grid or adjacent grids are considered as the
neighboring blocks. Object-based cell [3–10] is a cover
system based on a block. A rough relation between two
blocks can be found by computing the geometrical and to-
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pological relation of their cells.
The contact problem on two neighbored blocks has been

continuously studied in the past decades. Some special
contact problems have been solved [2,3,11–22]. However,
the contact among two 3D blocks with arbitrary shapes still
lacks of a thorough theory and has blocked the numerical
analysis of problem involving 3D discontinuity until Shi [1]
published the “contact theory”.
Contact theory [1] provides a solid mathematical base of

contact theory. It is still a deep gap between the theory and its
application in contact computation. A numerical algorithm
that can be used to calculate when and where two objects
contact is still in desire in various numerical methods, such
as finite element method (FEM [23]), discontinuous de-
formation analysis (DDA [24–28]), discrete element method
(DEM [29–31]), numerical manifold method (NMM [32–
35]), and boundary element method etc.
Two algorithms are proposed in this study. First, a contact

cover searching algorithm is proposed to find the entire
possible contact interfaces between two blocks with arbitrary
shapes. Second, a compact block cutting and algorithm is
proposed to form the entrance block which is the key concept
in contact theory.
In this paper, contact theory will be first introduced briefly,

as quoting the key formula to be used in the algorithm. Then
the algebraic presentation of a 3D object will be introduced.
Further, the contact cover searching algorithm is introduced
followed by the entrance block generation algorithm. At last,
several examples are reported.

2 A brief introduction of contact theory

Ref. [1] proposed a general contact theory for 2D and 3D
discontinuous computation, in which the concept of an en-
trance block is introduced and the complex contact problem
is simplified as the geometric relation between a reference
point and the entrance block.
Figure 1 illustrates the simplification process of the contact

problem between two 2D blocks, as from the original geo-
metric relation between block A and block B (Figure 1(a)), to
the generation of entrance block (Figure 1(b)), and further to

the boundary of entrance block and reference point a0
(Figure 1(c)). In Figure 1(c), the geometry relation between a
polygon E A B( , ) and a point a0 is very simple and compu-
table. However, the geometric relation between block A and
block B in Figure 1(a) is complex and incalculable. Contact
theory [1] provides a solid basis for discontinuous compu-
tation and offers an algebraic computation method for jud-
ging the geometric relation among complex 3D block
systems. In this section, the basic concept and formula to be
used in the programming will be introduced here.

2.1 Contact searching with the help of the entrance
block

Ref. [1] has proved that the complicated contact conditions
between two blocks A and B, i.e. whether they overlap, se-
parate or contact, can be simplified as the relations that the
reference point a0 is located inner, outer, or lies on the
boundary of entrance block ∂E(A, B), respectively.
Obviously, for a 2D block, its boundary is composed by a

series of lines (referring to Figure 1) and for a 3D block, its
boundary is composed by a series of polygons. If the
boundary of the entrance block, ∂E(A, B) is found, the re-
lation between blocks A and B can be judged by

d
d
d

< 0       overlap happen,
= 0       contact happen,
> 0       seperation condition,

(1)

where d is the minimum distance between a boundary
polygon (or line) of ∂E(A, B) and the reference point a0 on
block A. It can be calculated as

( )( )d n a a a a= min sign ( ) , (2)
k m=1,2,... 0 p 0 p

where Pk is the k boundary polygon (or line) of ∂E(A, B);m is
the total number of the boundary polygons (or lines); nk is the
outer normal vector of Pk; a0 is a reference point fixed on
block A; ap is the vertical projection of a0 on Pk. As illustrated
in Figure 1(d), the distance between a0 and ap is equal to the
distance between a1 and bp, which is the closest distance
between blocks A and B.
If d is equal to 0, a0 and ap coincide, so do a1 and bp. Thus,

Figure 1 (Color online) Simplification of the geometric relation between a triangle block A and a triangle block B. (a) Relation between block A and block
B; (b) relation between E(A,B) and a0; (c) relation between ∂E(A, B) and a0; (d) the distance between two blocks and contact point pairs.
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block A is in contact with block B at that overlapped points
(a1 and bp). For these points, the following relation exists
(referring to Figure 1(d)):
a b a a= + . (3)p p 1 0

The overlapped points (a1 and bp) are named as a contact
point pairs. When two blocks contact, at least a contact point
pairs, as one on block A and another on block B, can be
found. The contact point pairs have the same coordinate. In
mechanical analysis, suitable contact springs or penalties can
be applied to the contact point pairs to avoid the penetration
between block A and block B. In dynamic analysis, the tracks
of the contact point pairs can be used to calculate when and
where they will crush together.

2.2 The definition of entrance block

Denote A, B as two blocks and choose a0 as a reference point
of block A, which is moving together with A. In geometric
meaning, the entrance block E(A, B) is the track of a0 while
translating block A along the boundary and keeping in con-
tact with block B. The mathematical definition of entrance
block is as follows:
E A B B A a b a a( , ) = + = ( + ), (4)A B0 a ,b 0

where B–A is defined as B A+ ( ), with + being the Min-
kowski Sum operation [36] that is an operand acting two
geometrical objects; a is an arbitrarily point on block A; b is
an arbitrarily point on block B; – is the inverse operation,
that’s to say point –a and point a is symmetrical about the
origin (0, 0, 0).
Ref. [1] has extended the Minkowski Sum and Inverse

operation [36] from points to any geometrical objects. All the
geometrical objects to be handling are real subsets in the 3D
affine space, where points and vectors are two separate ca-
tegories of elements, and obey different operations. In this
study, however, the difference between points and vectors
will be ignored, since our discussion is always in a fixed
Descartes system, with no other Descartes systems involved.
In this study, a point, a0 say, is also the vector (still denoted
by a0) by connecting the origin and a0.
As shown in Figure 2, b is a point indicated by the vector

n j, and A is a general geometry objects, i.e. either a point, a
2D polygon or a 3D block. Referring to Figure 2, a+b obeys

the vector addition operation and A+b is a parallel translation
of block A along vector b in geometric meaning (Figure 2).
When calculating E(A, B) by eq. (4), every point of E(A, B)

is a position of a0. When block A and block B have common
points b=a. So if assuming x as a point or a vector, E(A, B) is
the union of all points a0+x with the condition that
A Bx( + ) and can be also written as

E A B a x( , ) = ( + ). (5)A Bx( + ) 0

Figures 1(b) and 3 illustrate two 2D examples of E(A, B).
The use of entrance block can help to transfer the contact

relations between two blocks to the entrance relations be-
tween one block and one point. Therefore, the contact
computation can be simplified as two tasks: (1) solving the
boundary of entrance block, E A B( ,  ); and (2) judging
whether a0 is located inner, outer, or lies on ∂E(A, B).

3 Data structure

3.1 Data structure of geometry objects

In computation program, different types of geometry object
are described by different classes, as listed in Table 1. In
Table 1, Class Cpoint, Cline, Cpolygon, Cdihedral, Cangle,
Cblock represents a point, a line, a polygon, a dihedral angle,
a 3D solid angle, and a 3D block, respectively.
A 3D block is illustrated in Figure 4, where A(0), A(1), A

(2) are the vertex set, edge set, and boundary polygon set of
block A. For example, the concave block shown in Figure 4
has 12 vertexes, 18 edges and 8 boundary polygons. The
block can be defined by its boundary, i.e. the 8 boundary
polygons. Each vertex is corresponding to a solid angle and
each edge is corresponding to a dihedral angle. So there are
12 solid angles and 18 dihedral angles in Figure 4.
Among those data, the boundary polygons A(2) is the ne-

cessary and sufficient to define block A. Each boundary
polygon of the block, i.e. one element in A(2), is a polygon
with normal vector points outer the block (as shown in
Figure 4(c)). A(2) is saved in polygonList of Class Cblock.
Thus, polygonList is the basic information required for a
Cblock object. Other data in a Cblock object can be null and
initialized by using the information from polygonList.
For convenience, A(0), A(1) should be generated and will

Figure 2 The operation of A+b, where b is a point. (a) A is a point; (b) A is a polygon; (c) A is a block.
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be used in the checking of contact condition. Each edge of
the block can be regarded as the common edge of a dihedral
angle. These dihedral angles are saved in diheList of Class
Cblock, and used to represent A(1). For example, edge a1a6 is

the common edge of P1 and P8 (Figure 4). a1a6 can be defined
by the dihedral angle D(P1, P8).
For a 3D block, each vertex of the block can be regarded as

the vertex of a solid angle. These solid angles are saved in
angleList of Class Cblock and used to represent A(0). Each
solid angle can be defined by its vertex and several ordered
vectors. For example, vertex a1 can be defined by the vertex
of solid angle composed by a a a a1 7 2 6 (Figure 4). A 3D
solid angle is illustrated in Figure 5, where the vertex is a and
there are 3 boundary faces. The i boundary face has two
edges, i.e. ei and e i+1, and its inner normal vector ni can be
calculated as e e×i i+1 .

3.2 The algebraic representation of geometry objects

In computation program, a geometry object must be algeb-
raically defined. In this study, a geometry object is defined
by its boundaries. Common geometric objects are illustrated

Figure 3 (Color online) An example of E(A, B) where A is a disk and B is
a square.

Table 1 Data structure for the representation of geometry objects (language: C#)

Class name Geometry Data type Variables Meaning

Cpoint Point or vector, e.g. a, ei, nk
Integer ID Vertex No.

Double x, y, z Coordinate values

Cpine Oriented edge, e.g. ab

Integer ID Edge No.

Cpoint p0, p1 Start and end

Cpoint vector Direction of line

Cpolygon Oriented polygon, e.g.
Figures 4(c) and 6(b)

Integer ID Polygon No.

List<Cpoint> plist Vertexes ordered in anti-clockwise direction

Cpoint inner An inner point, which is often used as the reference point of this
polygon

Cpoint vector The inner normal vector of the polygon, i.e. n

Cdihedral Solid dihedral angel, e.g.
Figure 8(b)

Integer ID The dihedral angle No.

Bool isConcave Indicator of concave dihedral angel

Cline edge The edge of dihedral angle. Its direction is er
Cpoint n0, n1 The inner normal vectors of the two boundary face, i.e. n11 n12

Cpoint v0, v1 The vector that is perpendicular to the edge vector and inner the
boundary face, i.e. e1 e2

Cangle 3D solid angle, e.g. Figure 7

Integer ID The solid angle No.

Cpoint vertex The vertex of the angle, which is often used as the reference point
of this angle

Bool isConcave Indicator of concave angle

List<Cpoint> vectorlist The boundary vectors ordered in right hand rule, i.e. ei
List< Cpoint > nodelist The node related to this angle and ordered in right hand rule

Cblock 3D block, e.g. Figure 6(c) and (e)

Integer ID The block No.

Cpoint a0 An inner point, which is often used as the reference point of this
angle

Bool isConcave Indicator of concave block

List<Cpolygon> polyList The boundary polygons of this block with normal vector pointed
to inner block, i.e. A(2) in Table 2 (Figure 4(c))

List<Cangle> angleList The solid angles at the vertexes of this block that corresponds to
the vertexes belonging to A(0) in Table 2 (Figure 4(a))

List<Cdihedral> diheList The dihedral angles containing the block edges that correspond to
the edges belonging to A(1) in Table 2 (Figure 4(b))
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in Figure 6. Following the symbols (referring to Table 2)
used by ref. [1], geometry objects can be expressed in the
form of point sets, as listed in Table 3.
Some common geometry objects are illustrated in Figure 6.

Referring to Table 3 and Figure 6, a n (n = 2 or 3) dimension
block can be defined by its boundaries and each boundary is
a n–1 dimension object. An edge is limited by its two ends
and has a direction from the start point to the end point. For
example, an edge ab can be defined by its boundaries, i.e.
points a and b (Figure 6(a)). A polygon is limited by its

edges and has a normal vector, which is normal to its edges
and obeying the right-hand rule. For example, a polygon on
the ground plane with vertexes in anti-clockwise turn has a
normal vector in upward direction (Figure 6(b)). A 3D block
is limited by its boundary polygons. For example, A triangle
P(a1a2a3) can be defined by its boundaries, oriented edges
a1a2, a2a3 and a3a1. A tetrahedron A with four vertexes a, b,
c, d can be defined by its boundaries, i.e. the oriented tri-
angles P(acb), P(cdb), P(bda) and P(dca) (Figure 6(c)).
It should be emphasized that, for a 3D block, as illustrated

in Figures 4, 6(c)–(e), it has a series of boundary polygons
and each boundary polygon P(a1a2...ak) is with vertexes
numbered in right hand rule, as a a a a×k k k k1 +1 points outer
of the block. That’s to say, the normal vector of a boundary
polygon is pointing outwards.
The inner normal vectors of these boundary polygons are

used to define the 3D block (Table 3). A concave block can
be regarded as the union of several sub-convex blocks
(Figure 6(d) and (e)), as the expression in Table 3.

4 Algorithm I: The contact cover searching al-
gorithm

4.1 Search the possible contact covers

If two blocks contact, the contact point pairs (Figure 1(d))
must be located on the boundaries of the entrance block, i.e.
∂E(A, B). Following Theorem of finite covers of entrance
blocks [1], ∂E(A, B) has a cover system

E A B C C C( , ) (0, 2) (2, 0) (1, 1), (6)

Figure 4 (Color online) The definition of a 3D block A. (a) The vertexes, A(0); (b) the edges, A(1); (c) the boundary polygons, A(2).

Figure 5 The definition of a 3D solid angle e1e2e3. (a) Solid angle with vertex of a; (b) boundary face P1; (c) boundary face P2; (d) boundary face P3.

Figure 6 (Color online) Geometric objects and their expressions of point
set. (a) Edge; (b) polygon; (c) tetrahedron; (d) concave polygon and its sub
convex polygons; (e) concave block and its sub convex blocks.
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where

C E A B C E A B
C E A B

(0, 2) = ( (0), (2)), (2, 0) = ( (2), (0)),
(1, 1) = ( (1), (1)).

(7)

Obviously, C(0,2) refers to the angle of block A is in
contact with the boundary face of block B; C(2,0) refers to
the boundary face of block A is in contact with the angle of
block B; C(1,1) refers to the edge of block A is in contact
with the edge of block B.
Eq. (6) can be used to search all the possible boundaries of

E(A, B). However, most of the covers (or elements) in the
right part of eq. (6) are inner E(A, B) and not the boundary of
E(A, B). Therefore, criterion of checking whether a cover is
the boundary of E(A, B) is required. Such criterions are
named as contact conditions [1].
The contact conditions are used to screen out whether an

element in C(0,2), C(2,0) or C(1,1) can serve as the boundary.

4.2 Contact condition for the angle to face contact

C(0,1) and C(2,0) handle the angle to face contacts. Refer-
ring to Figure 7, the contact condition for an angle to face
contact is

i ue n < 0,   = 1, 2, ..., , (8)i

where ei is a boundary vector of the solid angle containing
the vertex and starts from the vertex; u is the count of the
boundary vectors, as 4 in Figure 7; n is the inner normal
vector of the face. Referring to Figure 7, the solid angle of
block A is located in the upper half spaces, i.e.
A n a ( ) + 0. Thus, the solid angle of block may contact
with block B on the boundary polygon P and eq. (8) serves as
the contact condition, and the contact cover is E(a0, P). The
calculation of E(a0, P) can be referring to Table 4 and illu-
strated in Figure 2(b). Clearly, E(a0, P) is a polygon and has a

Table 2 Symbols used in this paper (after ref. [1])

Symbol Physical meaning

E(A, B) The entrance block with a definition of E(A, B)={a0+x|(A+x)∩B≠Ø}

A, B 1D, 2D, 3D geometry object, e.g. point, edge, polygon, block, etc.

A B, The boundaries of A,B

int(A) The inner points of A, A x A x Aint( ) = {  and }

A(0) The vertex of A, e.g. { }A a a a(0) = ,  ,  ..., k1 2

A(1) The boundary edge of A, e.g. A(1)=a1a2∪a2a3∪...∪ap–1ap∪apa1
A(2) The boundary polygon of A

x, y, z, t Real number

i, j, k, r, s, u, v, w Natural number

x Point x={x, y, z}

a Point a={xi, yi, zi}

b Point b={xj, yj, zj}

L(ab), or ab An edge from a to b

P(a1a2...akak+1) A polygon with ordered vertexes a1a2...akak+1 with ak+1=a1
D(P1, P2) A dihedral angle with the two outer boundary surfaces of P1and P2

B(P1, P2, ..., Pk) A 3D block with outer boundary surfaces of P1, P2, ..., Pk
B(D1, D2, ..., Dk) A 3D block containing inner dihedral angles of D1, D2, ..., Dk

e1e2...eueu+1 A solid angle with boundary edges er, 0<r<u+1 and eu+1=e1
S A plane

V A space

ni
ni=(xi, yi, zi) is a vector from (0,0,0) to (xi, yi, zi). It often refers to an inner normal vector, which is normal

to a boundary polygon or plane and points to the inside of the 3D block

mj
mj=(xj, yj, zj) is a vector. It often refers to an inner normal vector which is normal to a boundary edge and

points to the inside of the 2D polygon

er er is a vector parallel to the r edge of block A

hs Hs is a vector parallel to the s edge of block B

|| Parallel, e.g. ni||nj means ni=tnj, t is a real number

Parallel and in the same direction, e.g. ni↑↑nj means ni=tnj, t>0

Normal, e.g. ⊥ni is a plane passing (0,0,0), ni is the normal vector of the plane

At the same side, ni↑nj means ninj≥0
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shape as same as that of P.

4.3 Contact condition for the edge to edge contact

C(1,1) is corresponding to the edge to edge contacts. Re-
ferring to Figure 8(a), the contact condition for an edge to
edge contact is
e n e n h n h n0,   0,   0,   0, (9)rs rs rs rs1 2 1 2

where edge .er. of dihedral angel A is in contact with edge hs
of dihedral angel B; nrs is the normal vector of the contact
face, as

n e h= × (10)rs r s

and e1, e2 are two boundary vectors of the dihedral angel A
with a common edge of er; h1, h2 are two boundary vector of
the dihedral angel B with a common edge of hs. As shown in
Figure 8(b),
e n e e e n
h n h h h n

= × ,  = × , 
= × ,  = × , (11)r r

s s

1 11 2 12

1 21 2 22

where n11, n12 are the inner normal vectors of the two
boundary face of dihedral angel A; n21 and n22 are the inner
normal vectors of the two boundary face of dihedral angel B.
Obviously, when er touches and moves along hs, the contact
face is formed, i.e. E(er, hs). Referring to Figure 8(a), dihe-
dral angel A and dihedral angel B are in two half spaces
separated by the contact face E(er, hs). They may contact on
the boundary polygon E(er, hs) and eq. (9) serves as the
contact condition.
The calculation of E(er, hs) can be referring to Table 4 and

illustrated in Figure 9. Referring to Figure 9, if ab is not
parallel to cd, ab±cd forms a parallelogram with four or-

Table 3 The representation of 3D geometric objects in form of point sets

Geometric object Symbol Point set expression

Point a a

Vector (Figure 6(a)) e 1 e b a=1

Edge (Figure 6(a)) L ab( ) tab a b a= + ( )t0 1

Plane passing point O n r { }n x n= = 0r r

Plane passing a0 S S a n= + ( )r0

Half space passing point O n r { }n x n= = 0r r

Convex polygon
(Figure 6(b)) P

P S A S n= ,   = r

A m a= ( + )k f k k= 1, 2...

Half space with boundary passing a0 V V a n= + r0

Convex block (Figure 6(c)) A or B A n a= ( + )k f k k= 1, 2... , where k u{1, , }; nk is the inner normal vector of boundary
polygon Pk, which is pointing to the inner of block A; ak is a point on the boundary polygon Pk

Concave polygon (Figure 6(d)) P P C= 1 1, where Ci is the i sub convex polygon, i u{1, , }, and u is the number of the
sub convex polygon

Concave block (Figure 6(e)) A or B A C= 1 1, where Ci is the i sub convex block, i u{1, , }, and u is the number of the
sub convex block

Figure 7 (Color online) Angle to face contact (P B(2), a A(0), a0=a).

Figure 8 (Color online) Edge to edge contact. (a) Edge er of dihedral
angel A contacts with edge hs of dihedral angel B; (b) dihedral angles A and
B.
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dered vertexes, a±d, b±d, b±c, a±c. If ab is parallel to cd, the
parallelogram yields into two overlapped edge and ab±cd
will be an edge from a±c to b±d, or an edge from a±d to b+c.
It should be mentioned that ab and ba share the same ex-
pression of point set, but with inverse directions. Subse-
quently, ab+cd and ba+cd will form polygons with same
region, but with inverse directions, i.e. the inverse turns of
vertexes.
Obviously, the contact cover E(er, hs) is a parallelogram.

4.4 Implementation of the contact searching process

Eq. (6) simplifies the complex operation for solving E(A, B)
to a series of simple cases. There are only two kinds of
contacts existed in the calculation of ∂E(A, B).
(1) For C(0,2) or C(2,0), there are angle to face contacts.

For the angle to face contacts, i.e. C(0,2) and C(2,0), eq. (8)
will be used to judge whether the contact cover is a possible
boundary of E(A, B). For an angle to face contact, the contact
cover is the entrance block between a point and a polygon.
The flow chart of searching the possible boundary polygons
of entrance block is shown in Figure 10. The flow chart for
solving C(0,2) is shown in Figure 11. After switching A and

B in Figure 11, the flow chart can be used to solve C(2,0).
The formula used in Figure 11 will be explained in details by
an example in next section.
(2) For C(1,1), there are edge to edge contacts. For the

edge to edge contacts, i.e. C(1,1), eq. (9) will be used. For an
edge to edge contact, the contact cover is the entrance block
between two edges. The flow chart for solving C(1,1) is
illustrated in Figure 12. The formula used in Figure 12 will
be explained in details by an example in next section.
The solutions of both the upper two kinds of operation are

polygons. Therefore, ∂E(A, B) has a cover structure and each
cover is a polygon. A cover (or element) met the contact
condition is named as a contact cover or contact polygon.
If both blocks A and B are convex blocks, every contact

cover is a boundary polygon of E(A, B), i.e. on ∂E(A, B) and
all these contact covers will form a closed E(A, B).
However, if one of A and B is concave, some covers (or

elements) met the contact condition may be inner of E(A, B).
There are at least two choices for handling the contact pro-
blem involving concave block. One is cutting the concave
into sub-convex blocks and solving the entrance block by
using the sub-convex blocks. Another is forming the outer
boundary by a block cutting and boundary searching algo-
rithm based on the cover set containing all these covers. In
this study, the second choice is adopted.
In fact, in the contact searching process, the outer

Table 4 The sum or inverse operation between two simple point sets

Operation Figure Rule Result

+ A B a b+ = ( + )A Ba b,  
A block

b( )Bb
A point

a±b x x y y z za b± = ( ± ,   ± ,   ± )i j i j i j
A point

A±b Figure 2(a) A b a b± = ( ± )Aa
A block

P±a0 Figure 2(b) P Pa a a a a a a a a a( ,  ,  ...,  ) ± = ( ± ,  ± ,  ...,  ± )k k1 2 0 1 0 2 0 0
A polygon

ab±cd Figure 9 Pab cd a c b c b d a d± = ( ± ,  ± ,  ± ,  ± ) A parallelogram

Figure 9 An edge ab sum another edge cd. (a) ab is not parallel to cd (b)
ab || cd.

Figure 10 Flow chart of searching the contact covers (subroutine Cov-
ers_solve).
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boundary of the entrance block ∂E(A, B) is not required. The
contact covers inner E(A, B) will has large distances to the
reference point and never be found when searching the
possible contact position. That’s to say, they will never serve
as a contact position in reality and the set containing all the
contact covers can be used to search the possible contact
position directly.
The flow chart for contact searching is shown in Figure 13,

where the contact covers is used directly without forming ∂E
(A, B). When searching the contact point pairs, the distance
between the reference point and a contact cover will be
calculated (referring to Figure 1(d)). Once the distance is
negative, the contact will be considered to be close and
contact force will be existed between that contact point pairs.
All the contact covers will be checked. A detailed example
will be reported in the followed Sect. 6.

5 An example of the contact cover searching
algorithm

An example is reported here to show the computation details
of the contact cover searching algorithm. As illustrated in
Figure 14, block A is a tetrahedral. Block A has four vertexes
(Figure 14(a)), six edges (Figure 14(b)), and four outer

boundary polygons (Figure 14(c)). Each vertex is corre-
sponding to a 3D solid angle and each edge is corresponding
to a dihedral angle. Thus there are four solid angles, six
dihedral angles and four boundary polygons to be used in the
contact detection, as saved in angleList, polyList, and dihe-
List, respectively. A reference point a0 is linking to block A,
and assigned to the centroid point of block A.
Assuming block B is identical to block A. The entrance

block E(A, B) has three groups of possible boundaries, i.e. C
(0,2), C(2,0), and C(1,1).

5.1 Searching the contact cover for vertex-to-face
contacts

Following the flow chart in Figure 11, all the elements in C
(2,0) or C(0,2) will be checked one by one. When con-
sidering an angle to face contact, all the edges of the angle
will be checked (eq. (8)). Considering the case that the i 3D
angles of block A is contacting with the j boundary polygon
of block B, if the i 3D angles of block A (remembered as bkA.

Figure 11 Flow chart for solving the contact convers of the angle to face
contacts, i.e. for C(0,2).

Figure 12 Flow chart for solving the contact covers of the edge-edge
contacts, i.e. for C(1,1).
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angleList[i]) has k edges, there will be k flags to be calculated
as

Fg k bkA i k
bkB j

( ) = . angleList[ ].vecotorList[ ].
dot( .polyList[ ].vector),

(12)

where bkA and bkB represent the block A and B, respectively;
k is the ID of an edge of the i 3D angles of Block A; i is the ID
of a 3D solid angle in block A; j is the ID of a boundary
polygon of block B; Fg is the flags calculated by eq. (12);
bkB.polyList[j].vector refers to the inner normal vector of the
face, i.e. n in eq. (8); bkA.angleList[i].vectorList[k] refers to
the k boundary vector of the solid angle, i.e. ei in eq. (8); dot
is a function for dealing with the dot product operation be-
tween two vectors. Further, the contact condition of eq. (8)
can be used as

k Fg k, ( ) 0      isBp = true, (13)

where isBp is an indicator for whether the polygon between
the i 3D angles of block A and the j boundary polygon of
block B may sever as a boundary of E(A, B), i.e. a contact
cover.
As listed in Table 5 and illustrated in Figure 15, the case

that the 3D solid angle with vertex a1 of block A contacts
with the four boundary polygons of block B is checked. The
solid angle with vertex a1 has three vectors, i.e. ke , = 1, 2, 3k .

Each boundary polygon of Block B has its own inner normal
vector jn , = 1, 2, 3, 4j . Referring to Figure 15, only when j=4,
the solid angle bkA.angleList[1] is possible to contact with
bkB.ployList [4] (Figure 15(d)) and the formula for calcu-
lating the boundary contact polygon is

h bkB j
bkA i bkA a

Covers[ ] = . polyList[ ]
. angleList[ ] . vertex + . 0, (14)

where Covers[h] is the h boundary polygon of E(A, B).
Obviously, eq. (14) demonstrates a parallel move of bkB.
ployList[ j ] with a vector of (bkA.angleList[i].vertex), i.e.
the result is P a a+ ( )j i0 . Such operation is quite similar to
that illustrated in Figure 2(b).
Varying i and j in eq. (14), all the contact cover between A

(0) and B(2) can be found, as illustrated in Figure 16(a).
Together 4 contact covers are found. Similarly, all the contact
cover between A(2) and B(0) can be found, as illustrated in
Figure 16(b). For C(2,0), the formula for calculating the
boundary contact polygon is

h bkB j
bkA i bkA

 Covers[ ] = . angleList[ ]. vertex
. polyList[ ] + . a0. (15)

It can be seen that eq. (15) is an inverse operation of bkA.
ployList[i] and a parallel move of –bkA.ployList[i] with a
vector of (bkB j bkA. angleList[ ] . vertex + . a0), i.e. the result

Figure 13 The flow chart for searching the contact covers.

Figure 14 Numbering system of two identical blocks A and B. (a) Angle numbering system; (b) dihedral numbering system; (c) polygon numbering system.

Table 5 The searching process for C(0,2) in case of i = 1

j j Fg (eq. (14)) isBp (eq.(15))

1

1 =0

False2 =0

3 >0

2

1 >0

False2 <0

3 <0

3

1 <0

True2 <0

3 <0

4

1 <0

False2 >0

3 <0
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is ( )P a a+ ( + )j i 0 . Referring to Figure 16, four polygons
from C(2,0) and four polygons from C(0,2) are picked out
and belong to ∂E(A, B).

5.2 Searching the contact cover for edge-to-edge con-
tacts

Following the flow chart in Figure 12, all the elements in C
(1,1) will be also checked one by one. When considering an
edge to edge contact, eq. (9) will be checked.
Denote i is the ID of a dihedral angle in block A; j is the ID

of a dihedral angle in Block B. There are 6 edges in A(1), i.e.
Li with i=1, 2, 3, 4, 5, 6 and 6 edges in B(1), i.e. Lj with

j=1,2,3,4,5,6. Total 36 elements will be checked, as E(Li, Lj).
Only the polygon satisfying the contact condition (eq. (9))
may serve as a boundary polygon of E(A, B) The contact
condition (eq. (9)) can be written as

Fgi bk i
Fgi bk t i
Fgj bk j
Fgj bk j

Fgi
Fgi
Fg
Fgj

= A. diheList[ ].v1.dot(nvector) 0,
= A.diheLis [ ].v2.dot(nvector) 0,
= B.diheList[ ].v1.dot(nvector) 0,
= B.diheList[ ].v2.dot(nvector) 0,

or  

0,
0,
0,
0,

                                  isBP = true,

(16)

j

1

2

1

2

1

2

1

2

where v1 and v2 are the two vectors of a dihedral angle, i.e.
e1, e2 or h1, h2 in eq. (9); dot is the dot product operation
between two vectors; Fgi1, Fgi2, Fgj1, Fgj2 are four Fgs;
nvector is the normal vector of E(Li, Lj), i.e. nrs in eq. (9), and
can be calculated as

bkA i
bkB j

nvector = . diheList[ ]. edge.vector
× . diheList[ ].edge.vector. (17)

It should be mentioned that the vectors in eqs. (9)–(11) and
Figure 8 are sorted by right-hand rule whereas nvector used
in eqs. (16) and (17) may be not. So there are two possible
contact conditions existed in eq. (16).
In Table 6, the case i=1 is listed and corresponds to edge L1

of block A. There are six edges in B(1) to be checked, as Lj
with j=1, 2, 3, 4, 5, 6. When j=1, the two edges are parallel. In
such case, no boundary polygon can be formed for these two
edges and E(L1, L1) will be ignored. Referring to Table 6,
only when j=6, A(1) [1] is possible to contact with B(1) [6]
and the formula for calculating the boundary contact polygon
is

h bkB j
bkA i bkA

Covers[ ] = sgn*( . diheList[ ]. edge
. diheList[ ] . edge + . a0), (18)

where Covers[h] is the h boundary polygon of E(A, B); sgn is
the sign of Fgj1 and indicates whether Covers[h] is pointing
outer the entrance block. It can be seen that eq. (16) is an
operation of moving edge Lj along –Li and a parallel shifting
of the polygon (Lj–Li) by a vector of a0 (referring to Table 4
and Figure 9). The result is ((Lj–Li)+a0).
Varying i and j, all the possible contacts among A(1), B(1)

can be found, as listed in Table 7. Together 6 contact covers
are found in C(1,1).
Finally, these contact covers (or contact polygons) selected

from C(0,2), C(2,0) and C(1,1) form a closed E(A, B), as
illustrated in Figure 17. They will be used to identify the
contact position in discontinuous computation.

Figure 15 (Color online) An example for searching the boundary poly-
gon of the entrance block, i.e. the contact cover (for case of i = 1). (a) The
solid 3D angle of block A; (b) one of the boundary polygon of block B, Pj
with j = 2; (c) a case against eq. (8) (Pj, j=3); (d) a case satisfying eq. (8)
(Pj, j=4).

Figure 16 (Color online) Top view of the solved boundary polygons (or
contact covers) on ∂E(A, B). (a) Four covers from C(0,2); (b) four covers
from C(2,0).
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6 Discussion: How to determine the contact
mode with the solved contact covers

6.1 Application of the contact cover searching algo-
rithm

When dealing with contact problems in numerical methods,
such as FEM, DDA, DEM, and NMM, the proposed contact
cover searching algorithm can offer all the possible contact
boundaries between two blocks. When two blocks are ap-
proaching, the cover which has the closest distance with the
reference point will serve as the contact boundary. The actual
contact position can be solved by the relative position be-
tween that closest cover and the reference point (as shown in
Figure 1(d)). If two blocks are moving, the contact time and

position can be solved by the Newton’s law of motion
(Chapter 3, in ref. [32]).
As contact theory [1] is with solid mathematical deriva-

tion, the proposed algorithm is precise and no exception. At
the meantime, the algorithm has the advantage of minimal
calculation cost. The proposed algorithm is applicable to
various numerical simulation methods and can be used in the
contact computation involved in various engineering pro-
blems, such as robotic control, rock mass stability, dam
stability, and computation geometrics etc.
Among these solved contact covers, each contact cover (a

polygon or a line) selected from C(0,2), C(2,0) represents a

Table 6 The searching process for C(1,1) when i=1 (Figure 14(b))

j Fg (eq. (18)) isBP (eq. (18)) Sketch

1 False
(Parallel condition)

i1 –

i2 –

j1 –

j2 –

3 False

i1 >0

i2 0

j1 0

j2 >0

6 True

i1 >0

i2 >0

j1 <0

j2 <0

Table 7 The result for solving the boundary polygons of edge-edge
contacts, i.e. C(1,1)

i j Sketch

1 5

2 6

3 4

4 3

5 1

6 2

Figure 17 (Color online) Top view of a closed E(A, B), which contains 4
covers from C(0,2), 4 covers from C(2,0) and 6 covers from C(1,1).
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possible angle to face contact. Simultaneously, each contact
cover (a polygon or a line) selected from C(1,1) represents a
possible edge to edge contact. These contact covers yield to a
finite cover system. Such finite contact cover system is very
convenient in the identification of contact mode. If the re-
ference point is close to a contact cover, i.e. may contact with
that polygon (or line) in the next move, that contact mode
will be recorded in the discontinuous analysis and used in the
open-close iteration (or any other contact dealing method, e.
g. complementarity theory proposed by Zheng and Li [37]).

6.2 Special treatment for the overlapped contact covers

However, if sometimes there are overlapped contact covers,
the contact mode becomes complex and special treatment is
required. If a boundary polygon (or edge) of block A is
parallel to and possible contact with another boundary
polygon (or edge) of block B, overlapped contact covers will
be found in C(0,2), C(2,0) or C(1,1).
An example with parallel contact problem is shown in

Figures 18 and 19. The coordinate and numbering system of
cubic block A is shown in Figure 18. In Figure 19, the en-
trance block between two same cubic blocks, i.e. A=B, is
solved. The front face illustrated in Figure 19 is composed by
16 contact covers, as listed in Table 8. These contact covers
overlap each other and form 4 fragments. The right top
fragment on the front face is overlapped by four contact
covers (Figure 19), i.e. (A.a4, B.P3) from C(0,2), E(A.P5, B.
a6) from C(2,0), E(A.L6, B.L5) from C(1,1), and E(A.L8, B.L9)
from C(1,1). Because one cover indicates a possible contact
mode, the right top fragment on the front face is corre-
sponding to four possible contact modes, including two
edge-edge contacts, one angle-face contact, and one poly-
gon-angle contact.
In fact, for the entrance block illustrated in Figure 19, each

fragment on the front face is corresponding to 4 contact
covers. The front face contains 16 contact covers. For the
whole surface of the entrance block, ∂E(A, B) is composed by
96 covers, as 24 covers from C(0,2), 24 covers from C(2,0). ,
and 48 covers from C(1,1).
As another example, the entrance block between two

regular octahedrons is shown in Figure 20. It has 8 faces and
each face is composed by 12 covers. These covers are par-

tially overlapped and include 6 parallelograms formed by
edge-edge contacts and 6 triangles formed by angle-face
contacts or face-angle contacts.
If the reference point is close to k overlapped contact

covers, all k contact covers will be recorded and k contact
modes will be used in the open-close iteration. For the four
overlapped contact covers in Figure 19, these are four con-
tacts and will control the relative movement between block A

Figure 18 (Color online) Numbering system of cubic A, B.

Figure 19 (Color online) Finite contact covers on the front face of the
entrance block of two cubic (A=B).

Table 8 The contact covers on the front face of E(A, B) (referring to Figures 20 and 21)a)

C(0,2) C(2,0) C(1,1)

i j j i k1 k2 k1 k2

3 3 5 1 7 2 6 5

4 3 5 2 8 2 12 5

7 3 5 5 6 3 7 9

8 3 5 6 12 3 8 9

a) i is the angle ID; j is the polygon ID, k1 is the first dihedral ID; k2 is the second dihedral ID.

Figure 20 (Color online) Overlapped contact covers on ∂E(A, B) of two
regular octahedrons.
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and block B as following two cases:
(a) If the face A.P5 is sliding on the face B.P3, all four

contacts are close and have contact force.
(b) If A.P5 has an angle with B.P3, e.g. larger than 3° (a

tolerance specified in the programming), these four contact
covers will not be overlapped anymore. Therefore, only one
contact cover is the closest and corresponding to a unique
contact mode.
To determine which contact cover is the controlling one in

discontinuous analysis, all the overlapped contact covers will
be used in the open-close iteration. If one contact is close (as
d<0 in eq. (1)), it will work and has contact force. If it is
open, it will not work and has nothing to do the relative
movement between block A. and block B. That’s tsay, the
controlling contact covers will be solved by open-close
iteration automatically and without any exception. By
checking the distance between the reference point and the
contact cover, all the close contacts (or contact pair points)
can be found.
In short, ∂E(A, B) is a finite cover system and each cover is

corresponding to a contact mode. All the contact covers must
be recorded. These contact covers is necessary and sufficient
for the further determination of contact mode and contact
position.

7 Algorithm II: The entrance block forming
algorithm

The entrance block is the key concept of contact theory. Even
it is not required in the contact computation, it can help to
understand contact theory. The contact covers solved by the
upper contact cover searching algorithm can be used to
generate the entrance block with using a proper block cutting
algorithm.

7.1 The flow chart of program for solving 3D entrance
block

The flow chart of the main program for searching the 3D
entrance block is illustrated in Figure 21. The program has
the following steps:
(1) Input information of A(2) and B(2)(2), which will be

used to generate two Cblock objects, as block_A and
block_B.
(2) Search the contact covers. This function is programmed

based on Theorem of finite covers of entrance blocks (eq.
(6)) and the two contact conditions (eqs. (8) and (9)). A
subroutine named as “Covers_solve(Cblock A, Cblock B)”
is used to search the contact covers and returns a list of
boundary polygons, i.e. a List<Cpolygon> object covers.
Each boundary polygon is regarded as a cover and corre-
sponds to a contact mode. All these covers will be used to

form ∂E(A, B).
(3) Deal with the overlapped boundary polygons. Among

all the boundary polygons in covers, if two or more boundary
polygons are overlapped, they must be divided into small
pieces, i.e. sub-polygons, by a 2D block cutting and loop
searching subroutine named as “Block_Cut_2D(List<CPo-
lygon>polygons)”. All sub-polygons are individual and will
not overlap each other.
(4) All the boundary covers (or polygons) found in step 3

will be used to form E(A, B), block_EAB. If both block A and
block B are convex, these boundary covers can absolutely be
a closed ∂E(A, B) and will not have any unwanted face.
Therefore, these boundary covers are saved to define E(A,
B), i.e. in polygonList of block_EAB. If one of A and B is
concave, a 3D block cutting and boundary searching sub-
routine named as “Block_Cut_3D(List<Cpolygon>poly-
gons) ” will be carried out to form a closed ∂E(A, B).
It can be seen from the flow chart in Figure 21 that the key

subroutine is to search the possible boundaries of the en-
trance block, i.e. Covers_solve(Cblock A, Cblock B). If
parallel faces are encountered, a 2D block cutting and loop
searching subroutine will be used, i.e. Block_Cut_2D
(List<CPolygon>polygons). If concave block is involved, a
3D block cutting and boundary searching subroutine, i.e.
Block_Cut_3D(List<Cpolygon> polygons), is required to
form E(A, B). The subroutine of Covers_solve has been in-
troduced in Sect. 4. Block_Cut_2D and Block_Cut_3D
subroutines will be introduced in Supporting Information,
respectively.

Figure 21 The flow chart for solving 3D entrance block E(A, B).
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7.2 Examples of solvedE(A,B)

Some examples of the solved E(A, B) are shown in Figures
22 and 23. Figure 22 illustrates the entrance block between a
concave block A, i.e. the moving shape and a convex block, i.
e. the solid and fixed one, which is indicating by the block
with black frame. Figure 23 illustrates several examples of
3D entrance block. The left, middle and right column in
Figure 23 is block A, block B, and the entrance block E(A, B),
respectively.

8 The application of contact computation in a
rock fall simulation

A rock fall study is carried out with using the contact
searching algorithm reported in this paper. The rock is slid-
ing down and jumping on the fixed slope base (Figure 24).
The material is assuming to be rigid and no energy lost is
considered in this simulation. The simulation is not accurate
but it demonstrates that the proposed contact searching al-
gorithm is effective and applicable to the numerical simu-
lation of 3D discontinuous system.
In this example, the slope is made up of 5000 small tri-

angles. Both convex and concave triangles are used in this
simulation. Only the contact covers are used in the contact
searching process and without forming the real entrance
block. As discussed in Sect. 6, the entrance block is not
required in the contact calculation.
In the calculation, only the local contact covers are sear-

ched without searching all the global contact covers. The
local contact covers are determined by the coordinates of
vertexes. For example, in step 2000 (Figure 24(c)), only 18
triangles is required to be checked when searching the local
contact covers. Compared with checking all 5000 triangles
existed in the slope for obtaining the global contact covers,
the computational efficiency of the local contact covers is
278 times higher.

Figure 22 (Color online) E(A, B) between a 2D concave block and a 2D
convex block.

Figure 23 (Color online) E(A, B) between two 3D blocks.

Figure 24 (Color online) Application of contact searching algorithm in a rock fall analysis. (a) Initial state; (b) 1000 step; (c) 2000 step.
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9 Conclusions

This paper bridged the gap between the contact theory and
the contact computation. The following conclusions can be
drawn:
(1) A contact cover searching algorithm is proposed to

identify the possible contact covers between two blocks. The
algorithm is complete and compact. Following the proposed
flow chart and formula, all the contact covers can be selected
by checking whether the contact condition is fulfilled or not.
In discontinuous analysis, if the distance between the re-
ference point and the contact cover is negative, that contact
will be close and has contact force.
(2) The contact time and position can be determined by the

closest cover and the reference point. For overlapping con-
tact covers, open-close iteration is required to identify the
actual contact mode.
(3) A compact 3D block cutting algorithm is included in

this paper and is used to form 3D entrance block when
concave blocks are encountered. The entrance block can help
to understand the contact theory, but is not in need for contact
computation.
(4) The proposed method is applied to analyze the rockfall

problem. The results verify that the proposed algorithm is
precise and only local contact covers are required in the
actual contact computation.
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1  The 2D block cutting and loop searching subroutine 

Once overlapped boundary polygons are found in solving   ,E A B , 2D block cutting and loop searching subroutine must 

be used to search the sub boundary polygons, i.e. the finite covers of entrance boundary. The idea of 2D block cutting and 
loop searching algorithm is first proposed in Shi (1988) [1]. In this study, the data structure is different with that in Shi (1988) 
and the new contact theory is used to check the geometry relation among edges. The flow chart of 2D block cutting and loop 
searching subroutine is illustrated in Figure S1. 
 

 

Figure S1  The flow chart of 2D block cutting and loop searching subroutine. 

An example is reported here to show the implementation of 2D block cutting and loop searching process, which includes 
the following steps: 

(1) As shown in Figures S2(a) and S2(b), 10 edges with 16 nodes are inputted.  
(2) After the intersection of edges (Figure S2(c)), another 9 intersections, i.e. node 17 to 25, are found. 
(3) The branches which do not intersect with other edges are collected as cracks and removed from the network for loop 

searching. The final network for loop searching is shown in Figure S2(d) and only includes 13 nodes. In this step, a 
node-edge relation matrix is formed as Table S1. In the node-edge relation matrix, the vectors is sorted by anti-clockwise 

start 

Import data file 

Intersection of segments 

Segments cut 

Node‐segment relation matrix 

2D loop searching 

end 



direction, e.g. node 12 in Figure S2(d) has three sorted vectors, i.e. v1 from 12 to 11, v2 from 12 to 6 and v3 from 12 to 7, as 
shown in Figure S3(a) and saved in the matrix as Column Node 12 in Table S1. 

 

 

(a) Input nodes   (b) Input edges   (c) Intersections   (d) Final network 

Figure S2  Preparing a network for loop searching without any branches. (a) Input nodes; (b) input edges; (c) intersections; (d) final network. 

 

(a) Vectors from node 12  (b) Loop 1  (c) Loop 2 

   

(d) Loop 3  (e) Loop 4 (f) Loop 5 

Figure S3  Loop searching process where the gray arrows indicate the traces used and the blue arrows indicate the trace of current loop. (a) Vectors from 
node 12; (b) loop 1; (c) loop 2; (d) loop 3; (e) loop 4; (f) loop 5. 

 

 

(4) Based on the node-edge relation matrix, 5 close loops can be found, i.e. as shown in Figures S3(b) to S3(f). For each 
loop, the path follows the clockwise direction. A simple rule can be used as:  

if M(N0, k) = N0, the id of next node N1will be M(N0, k-1) where M is the node-edge relation matrix; N0 is the No. of last 
node in loop; k is the element id in column N0 of matrix M; and if M(N0, k) is the first element in column N0, N1 will be the 
last element in column N0. 
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Taking loop 1 as an example, it starts from Node 1. Referring to Table S1, loop 1 goes to Node 5. At Node 5, its coming 
trace is a vector from Node 5 to Node 1. If the trace vector is rotated following the clockwise direction, it will firstly touch 
vector from Node 5 to Node 10, which will be used as the next path. Referring to Column Node 5 in Table S1, Node 10 is just 
at the left side of Node 1. Thus, loop 1 goes to Node 10. Similarly referring to Column Node 10 in Table S1, at Node 10, 
Node 1 is just at the left side of Node 5 which is the last node for Node 10 in loop 1. So loop 1 goes to Node 1 and forms a 
close loop. After loop 1 is found, the node-edge relation matrix yields to the line After loop 1 in Table S1. Continuing the 
upper searching process, five loops can be easily found just based on the node-edge relation matrix. After all the loops have 
been found, all the node marks in the matrix will be addressed as referring to the final matrix indicated by the last line in 
Table S1. 

Using the upper 2D block cutting and loop searching subroutine, the close boundary loop can be found both for the 
concave polygon and convex polygon.  

(5) After all the loops have been found, solid block will be identified further as follows: 
(i) A loop with nodes ordered in anti-clockwise direction means a solid region, remembered as a solid loop, e.g. the loops 1, 

3, 4, 5 in Figure S3. 
(ii) A loop with nodes ordered in clockwise direction means a hole, remembered as a hole loop. 
(iii) If a hole loop is outer of all solid loop, it will be the outer boundary of the solid regions, e.g. the loop 2 in Figure S3. 
(iv) If a hole loop is inner of a solid loop, they will form a holed 2D block together. There is no holed block in Figure S3. 

Two examples which contain holed blocks are illustrated in Figure S4. 
 

 

(a) A holed block 

 

(b) A holed block with hole connected to the outer boundary 
 

Figure S4  Loop searching for blocks containing holes. (a) A holed block; (b) a holed block with hole connected to the outer boundary. 
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Table S1 the node-edge relation matrix for the network in Figure S2(d) a) 

Node NO. 1  2  3  4  5 6 7 8 9 10  11  12 13

Initial state (Figure S2(d)) 5,10  6,7  7,9  8,10 1,6,10 5,2,12 2,3,12 9,4 3, 8,13 4,1,5  12,13  11,6,7 11,9

After loop 1  (Figure S3(b)) 5,10  6,7  7,9  8,10 1,6,10 5,2,12 2,3,12 9,4 3, 8,13 4,1,5  12,13  11,6,7 11,9

After loop 2  (Figure S3(c)) ‐5,10  6,7  7,9  8,10 1,6,‐10 5,2,12 2,3,12 9,4 3, 8,13 4,‐1 ,5  12,13  11,6,7 11,9

After loop 3  (Figure S3(d)) ‐5,‐10  ‐6,7  ‐7,9  ‐8,10 ‐1,6,‐10 ‐5,2,12 ‐2,3,12 9,4 ‐3, 8,13 ‐4,‐1,5  12,13  11,6,7 11,9

After loop 4  (Figure S3(e)) ‐5,‐10  ‐6,‐7  ‐7,9  ‐8,10 ‐1,6,‐10 ‐5,‐2,12 ‐2,3,‐12 9,4 ‐3, 8,13 ‐4,‐1,5  12,13  11,‐6,7 11,9

After loop 5  (Figure S3(f)) ‐5,‐10  ‐6,‐7  ‐7,‐9  ‐8,10 ‐1,6,‐10 ‐5,‐2,12 ‐2,‐3,‐12 ‐9,4 ‐3, 8,‐13 ‐4,‐1,5  ‐12,13  11,‐6,‐7 ‐11,9

 a) - indicates the trace used and   indicates the trace of current loop. 
 

2 The 3D block cutting and boundary searching subroutine 
Even some developments have been achieved in the past decades in the block cutting [2,3] or three dimensional discontinuity 
layout optimization [4], the block cutting algorithm proposed in this study is believed to be of high efficiency and can be used 
to form 3D block system with complex discontinuities and connectivity. 

The 3D block cutting and boundary searching algorithm used in this study has same base with that used by Zhang (2015) 
[2], i.e. the oriented block definition as that illustrated in Figure 6(f)–(h). The block data structure is listed in Table 1. 

If one of  A  and B .  is concave (e.g. one of its dihedral angles is concave), a 3D block cutting and boundary searching 
subroutine named as “Block_Cut_3D(List<CPolygon> polygons) ” will be carried out. Otherwise, only need to store all the 
possible boundary polygons. They can absolutely be a closed   ,E A B  and will not have any unwanted face. The 3D block 

cutting and boundary searching subroutine not only can be used to solving   ,E A B  for concave blocks but also can be used 

to generate block system based on the discontinuities geometry info, e.g. the joints and faults or rock. 
The flow chart of 3D block cutting and boundary searching subroutine is illustrated in Figure S5. 
An example is reported here to show the implementation of3D block cutting and boundary searching process, which 

includes the following steps: 
(1) As shown in Table S2, a block with 6 faces and a cutting face is inputted. Totally 7 polygons are inputted and saved as 

a geometry info 0Q . 

(2) After the intersection of polygons (Table S3), total 4 intersected edges are found, i.e. edge from node 13 to node 14, 
edge from node 14 to node 15, edge from node 15 to node 16 and edge from node 16 to node 13. 

(3) Every polygon containing intersected edges will be treated by the 2D block cutting and loop searching subroutine and 
divided into several sub-polygons. Finally, the geometry info yields to 2Q  where total 13 polygons are found. 

(4) Delete the branches. 
 

 

Figure S5  The flow chart of 3D block cutting and boundary searching subroutine. 
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Table S2 input info, a polygon list 0Q  

Polygon ID Vertex Nos. Geometry info 

1 4,3,2,1 

 

2 5,6,7,8 

3 1,2,6,5 

4 2,3,7,6 

5 3,4,8,7 

6 4,1,5,8 

7 9,10,11,12 

Table S3 Geometry info 1Q  after the intersection of polygons 

Polygon ID Vertex Nos. Intersected edges Geometry info 

1 4,3,2,1  

 

2 5,6,7,8  

3 1,2,6,5 14,15 

4 2,3,7,6 13,14 

5 3,4,8,7 16,13 

6 4,1,5,8 15,16 

7 9,10,11,12 
(13,14), (14, 15), (15, 

16), (16,13) 

For forming a closed block, a boundary polygon of a block must intersect with at least two boundary polygons. If a 
polygon only intersects with one polygon, it is considered to be a crack polygon and will not serve as the close boundary of a 
block. Therefore, if an edge only owns to one polygon (Table S4), its owner will intersects no more than one polygon and 
removed from the block forming process. For example, the rows with bold and red text in Table S4 indicate edges with single 
owner polygon. These edges and their owner polygons, i.e.  11 9,15,16,12P  and  13 14,10,11,13P , should be removed from the 

geometry info matrix 2Q  (Table S5). After deleting these edges and renumbering, the final Geometry info matrix Q  will be 

as that in Tables S6 and S7. 
Based on 2Q  (Table S4), a final edge – polygon relation matrix are formed as 0M , as shown in Table S7. If one edge re

  

owns to k  polygons kP  , its owners will be sorted by their inner vectors kv
  in right-hand screw rule, as illustrated in 

Figure S6. For each polygon  , its inner vector can be calculated as: 

 k k rv n e     (S1) 

where kn
  is the inner normal vector of the polygon kP  (referring to Figure 6(f) and (g)); re

  is the vector of the common 

edge for these polygons. Noticing that, if all kP  have an edge vector of re
 , a series of dihedral angles can be easily 
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identified based on 0M , such as dihedral angles (- kP , 1kP  ) where  1, ,k u  , 1 1uP P  , u  is the maximum number of the 

Ordered Polygon IDs (Table S7) and + means polygon has normal vector pointing inner the dihedral angle and - means 
polygon has normal vector pointing outer the dihedral angle. Each dihedral angle is defined by two outer boundary polygons 
and these two boundary polygons are ordered in the right-hand screw rule and pointed outer of the dihedral angle. Clearly, a 
dihedral angle has two outer boundary polygons with a common edge, but with inverse direction. 

For example, for edge 1 in Table S6, i.e. 1 2VV , there are two possible dihedral angles, i.e.  1 3,D P P  and  3 1,D P P  . For 

edge 20, i.e. 11 12V V , there are three possible dihedral angles, i.e.,  9 11,D P P ,  11 10,D P P , and  10 9,D P P  . Clearly, all the 

polygon are addressed twice when forming the dihedral angles, as one time kP  is used and another time kP  is used. 

(5) The block forming process is as follows: 
(a) Each polygon have two face and will be treated as two boundary polygons, one is with vertex ordered in anti-clockwise 
direction and another is with vertex ordered in clockwise direction. For the example in (Tables S8 and S9), because there are 
11 polygons in Table S8, together they are 22 boundary polygons to be used in the 3D block searching. 

 

Table S4 Geometry info 2Q  before deleting the branches 

Edge ID Vertex IDs Owner polygon IDs  Geometry info 
1 1,2 1,3 

 

2 1,4 1,9 
3 1,15 3,9 
4 2,3 1,5 
5 2,14 3,5 
6 3,4 1,7 
7 3,11 5,7 
8 4,16 7,9 
9 5,6 2,4 
10 5,8 2,10 
11 5,15 4,10 
12 6,7 2,6 
13 6,14 4,6 
14 7,8 2,8 
15 7,13 6,8 
16 8,16 8,10 
17 9,12 11 
18 9,15 11 
19 10,11 13 
20 10,14 13 
21 11,13 13 
22 12,16 11 
23 13,14 5,6,12,13 
24 13, 16 7,8,12 
25 14,15 3,4,12 
26 15,16 9,10,11,12 

 

Table S5 Geometry info 2Q  after searching sub-polygons 

Initial ID Vertex Nos., Vi Geometry info 

1 4,3,2,1 

2 5,6,7,8 

3 1,2,14,15 

4 6,5,15,14 

5 2,3,13,14 

6 7,6,14,13 

(b) Polygon number system 
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(b) Line number system 



7 3,4,16,13 

8 8,7,13,16 

9 4,1,15,16 

10 5,8,16,15 

11 9,15,16,12 

12 15,14,13,16 

13 14,10,11,13 

 
 

   

(a) Polygons with a common edge (b) Inner vectors (c) Right‐hand rule 
 

Figure S6  Polygons passing same edge are sorted by the right-hand rule. (a) Polygons with a common edge; (b) Inner vectors; (c) Right-hand rule. 

 

Table S6 final polygon info 

Polygon ID Vertex Nos. 
1 4,3,2,1 
2 5,6,7,8 
3 1,2,10,11 
4 6,5,11,10 
5 2,3,9,10 
6 7,6,10,9 
7 3,4,12,9 
8 8,7,9,12 
9 4,1,11,12 
10 5,8,12,11 
11 11,10,9,12 

An Boolean array MP  is used to save the usage of polygons. MP  has 22 members. Initially all these polygons are not 
used and  MP k true  for 1,2,...,22k  . 

(b) The necessary and sufficient condition of a successful block searching process is that all polygons must be used twice. 
Thus, the searching for a new block will be started from polygon Pi with  MP k true . If  MP k false , this polygon will be 

skipped. 
An Boolean array ML  is used to mark whether the edge has been used in the searching process. At the start of searching a 

new block, all the edges are not used and  ML j true  for 1, ,20j   . 

(c) Polygon kP  is used as the outer boundary of the new block to be searched. Each edges of polygon kP  will serve as an 

edge of the new block and also the edge of a dihedral angle of the new block. These edges and dihedral angles can be easily 
extracted from 0M .  
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For example, the searching for a new block B1 is starts from the first true mark in MP , i.e.  1MP . The mark  1MP  

refers to polygon 1P . There are four edges in 0M  (Table S8) are with an owner of polygon 1P , i.e. 6 4 1 2, , ,L L L L . If 

  trueML j  , jL  will be used to search a dihedral angle. Otherwise, jL  will be skipped in the searching process. For the first 

searching round, all  ML j  is true and all 6 4 1 2,, ,L LL L  should be checked. 

For 6L , the dihedral angle with one outer boundary polygon of 1P  is  1 7,D P P . . There are two rules to be obeyed in the 

searching process: one is that on the common edge 6L , the edges of 1P  and 7P  are of inverse directions; another is that the 

turn of the two boundary polygon should follow the right-hand rule (Table S9). 
Similarly, dihedral angles  1 5,D P P ,  1 3,D P P ,  1 9,D P P  can be found for 4 1 2, ,L L L  respectively. Because polygons 1P , 7P , 

5P , 3P , 9P  are used in this searching round, the usage state of these polygons will be set to be false, i.e.,  MP i false  with 

1,3,5,7,9i  . At the same time, if the line edge is used in this searching round, its mark, i.e.  ML j  will be set to be false. 

That’s to say,  ML j false  with 1,2,4,6j  . 

Table S7 the edge – polygon relation matrix 0M  for block forming 

Edge ID, Sj Vertex IDs., Vi Ordered Polygon IDs, Pk Geometry info 

1 1,2 1,3 

2 1,4 1,9 

3 1,11 3,9 

4 2,3 1,5 

5 2,10 3,5 

6 3,4 1,7 

7 2,9 5,7 

8 4,11 7,9 

9 5,6 2,4 

10 5,8 2,10 

11 5,11 4,10 

12 6,7 2,6 

13 6,10 4,6 

14 7,8 2,8 

15 7,9 6,8 

16 8,12 8,10 

17 9,10 5,6,11 

18 9,12 7,8,11 

19 10,11 3,4,11 

20 11,12 9,10,11 

 

(d) In step c, there are several polygons addressed in these dihedral angles found (e.g. polygons 3P , 5P , 7P , 9P  in the 

cell with blue frame in Table S10). Substitute these polygon IDs into step c and check them one by one. The searching 
process is listed in Table S10. Referring to Table S10, the 2nd, 3rd, 4th and 5th searching round are used to check 3P , 5P , 7P , 

and 9P , respectively. If an edge in 0M  has been used in former searching process, i.e. it is with a mark  ML j  of false, it 

will be skipped in the searching process. 
(e) Repeat step d, if all the polygon IDs addressed in the dihedral angles found in former searching process have been 

checked and no more dihedral angles can be found, the searching process will be stopped and a close block should be formed. 
Either the polygon used or the dihedral angles found can define the 3D block with a data structure listed in Table 4. 

Table S8 final polygon info 

Polygon ID, k  Vertex Nos., i  Edge IDs, j  

1 4,3,2,1 6,4,1,2 
2 5,6,7,8 9,10,11,13 
3 1,2,10,11 1,3,5,19 

(c) Polygon number system 

(a) Node number system 
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(b) Line number system 



4 6,5,11,10 9,11,13,19 
5 2,3,9,10 4,5,7,17 
6 7,6,10,9 12,13,15,17 
7 3,4,12,9 6,7,8,18 
8 8,7,9,12 14,15,16,18 
9 4,1,11,12 2,3,8,20 
10 5,8,12,11 10,11,16,20 
11 11,10,9,12 17,18,19,20 

Table S9 the edge – polygon relation matrix 0M  for block forming 

Edge ID, j  Vertex IDs., i  Ordered Polygon IDs, k  Geometry info 

1 1,2 1,3 

 

2 1,4 1,9 
3 1,11 3,9 
4 2,3 1,5 
5 2,10 3,5 
6 3,4 1,7 
7 2,9 5,7 
8 4,11 7,9 
9 5,6 2,4 
10 5,8 2,10 
11 5,11 4,10 
12 6,7 2,6 
13 6,10 4,6 
14 7,8 2,8 
15 7,9 6,8 
16 8,12 8,10 
17 9,10 5,6,11 
18 9,12 7,8,11 
19 10,11 3,4,11 
20 11,12 9,10,11 

 
(f) If there is any  MP i  is true, repeat step b to e for another round of block searching. If all the boundary polygons have 

been used, i.e. all   falseMP i  . , the block searching work will be completed and all the blocks have been found. In this 

example, the detailed searching process is listed in Table S10. Total 3 blocks are found. Two of them, i.e. block 1 and block 3, 
are solid and block 2 is void, i.e. it is the outer boundary of a hole. 

(g) After all the solid and void blocks have been found, the relation between these blocks will be checked. This process is 
similar to that in 2D case. If there is a hole, two overlapped blocks will be found, one is solid with inner normal vectors point 
to inner of hole and another is void with inner normal vectors point to the outer of hole, as shown in Figure S8. 

Table S10 The searching process for blocks in Figure 15a) 

Block ID Check round outer Polygon ID dihedral angles 

1 (Figure S7(a)) 

1 1+ (1+,3+), (1+,9+), (1+,5+), (1+,7+) 
2 3+ (3+, 9+), (3+, 5+), (3+,11+) 
3 5+ (5+,7+), (5+,11+) 
4 7+ (7+,9+), (7+,11+) 
5 9+ (9+,11+) 
6 11+ Non 

2 (Figure S7(b)) 

1 1- (3-,1-), (9-,1-), (5-,1-), (7-,1-) 
2 3- (9-,3-), (5-,3-), (4-,3-) 
3 5- (7-,5-), (6-,5-) 
4 7- (9-,7-), (8-,7-) 
5 9- (10-, 9-) 
6 4- (2-, 4-) 
7 6- (2-, 6-) 
8 8- (2-, 8-) 
9 10- (2-, 10-) 
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10 2- Non 

3 (Figure S7(c)) 

1 2+ ( 4+, 2+), (6+, 2+), (8+, 2+), (10+, 2+) 
2 4+ (6+, 4+), (4+, 10+), (11-, 4+) 
3 6+ (11-, 6+), (8+, 6+) 
4 8+ (10+, 8+), (8+, 11-) 
5 10+ (10+, 11-) 
6 11- Non 

a) + means polygon with vertex ordered in the turn listed in Table S9, and - means polygon with vertex ordered in the inverse turn listed in Table S9. 
 

 

(a) Block1 – a solid block 

 

(b) Block2 – a hole 

 

(c) Block3 – a solid block 
 

Figure S7  An example of block searching process. (a) Block1 – a solid block; (b) block2 – a hole; (c) block3 – a solid block. 

 

 

 

(a) Loops 
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(b) A holed block 

Figure S8  Some special cases of 3D block forming. (a) Loops; (b) a holed block. 
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